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Abstract

We investigate prototype-driven learning for pri-
marily unsupervised sequence modeling. Prior
knowledge is specified declaratively, by provid-
ing a few canonical examples of each target an-
notation label. This sparse prototype information
is then propagated across a corpus using distri-
butional similarity features in a log-linear gener-
ative model. On part-of-speech induction in En-
glish and Chinese, as well as an information extrac-
tion task, prototype features provide substantial er-
ror rate reductions over competitive baselines and
outperform previous work. For example, we can
achieve an English part-of-speech tagging accuracy
of 80.5% using only three examples of each tag
and no dictionary constraints. We also compare to
semi-supervised learning and discuss the system’s
error trends.

1 Introduction

Learning, broadly taken, involves choosing a good
model from a large space of possible models. In su-
pervised learning, model behavior is primarily de-
termined by labeled examples, whose production
requires a certain kind of expertise and, typically,
a substantial commitment of resources. In unsu-
pervised learning, model behavior is largely deter-
mined by the structure of the model. Designing
models to exhibit a certain target behavior requires
another, rare kind of expertise and effort. Unsuper-
vised learning, while minimizing the usage of la-
beled data, does not necessarily minimize total ef-
fort. We therefore consider here how to learn mod-
els with the least effort. In particular, we argue for a
certain kind of semi-supervised learning, which we
call prototype-driven learning.

In prototype-driven learning, we specify prototyp-
ical examples for each target label or label configu-
ration, but do not necessarily label any documents or
sentences. For example, when learning a model for

Penn treebank-style part-of-speech tagging in En-
glish, we may list the 45 target tags and a few exam-
ples of each tag (see figure 4 for a concrete prototype
list for this task). This manner of specifying prior
knowledge about the task has several advantages.
First, is it certainly compact (though it remains to
be proven that it is effective). Second, it is more or
less the minimum one would have to provide to a
human annotator in order to specify a new annota-
tion task and policy (compare, for example, with the
list in figure 2, which suggests an entirely different
task). Indeed, prototype lists have been used ped-
agogically to summarize tagsets to students (Man-
ning and Schütze, 1999). Finally, natural language
does exhibit proform and prototype effects (Radford,
1988), which suggests that learning by analogy to
prototypes may be effective for language tasks.

In this paper, we consider three sequence mod-
eling tasks: part-of-speech tagging in English and
Chinese and a classified ads information extraction
task. Our general approach is to use distributional
similarity to link any given word to similar pro-
totypes. For example, the word reported may be
linked to said, which is in turn a prototype for the
part-of-speech VBD. We then encode these pro-
totype links as features in a log-linear generative
model, which is trained to fit unlabeled data (see
section 4.1). Distributional prototype features pro-
vide substantial error rate reductions on all three
tasks. For example, on English part-of-speech tag-
ging with three prototypes per tag, adding prototype
features to the baseline raises per-position accuracy
from 41.3% to 80.5%.

2 Tasks and Related Work: Tagging

For our part-of-speech tagging experiments, we used
data from the English and Chinese Penn treebanks
(Marcus et al., 1994; Ircs, 2002). Example sentences



(a) DT VBN NNS RB MD VB NNS TO VB NNS IN NNS RBR CC RBR RB .

The proposed changes also would allow executives to report exercises of options later and less often .

(b) NR AD VV AS PU NN VV DER VV PU PN AD VV DER VV PU DEC NN VV PU

!"# $ % & ' () * + , - ./ 0 * + , 1 2 34 56 7

(c) FEAT FEAT FEAT FEAT NBRHD NBRHD NBRHD NBRHD NBRHD SIZE SIZE SIZE SIZE

Vine covered cottage , near Contra Costa Hills . 2 bedroom house ,

FEAT FEAT FEAT FEAT FEAT RESTR RESTR RESTR RESTR RENT RENT RENT RENT

modern kitchen and dishwasher . No pets allowed . 1050 / month$

Figure 1: Sequence tasks: (a) English POS, (b) Chinese POS, and (c) Classified ad segmentation

are shown in figure 1(a) and (b). A great deal of re-
search has investigated the unsupervised and semi-
supervised induction of part-of-speech models, es-
pecially in English, and there is unfortunately only
space to mention some highly related work here.

One approach to unsupervised learning of part-
of-speech models is to induce HMMs from un-
labeled data in a maximum-likelihood framework.
For example, Merialdo (1991) presents experiments
learning HMMs using EM. Merialdo’s results most
famously show that re-estimation degrades accu-
racy unless almost no examples are labeled. Less
famously, his results also demonstrate that re-
estimation can improve tagging accuracies to some
degree in the fully unsupervised case.

One recent and much more successful approach
to part-of-speech learning is contrastive estimation,
presented in Smith and Eisner (2005). They utilize
task-specific comparison neighborhoods for part-of-
speech tagging to alter their objective function.

Both of these works require specification of the
legal tags for each word. Such dictionaries are large
and embody a great deal of lexical knowledge. A
prototype list, in contrast, is extremely compact.

3 Tasks and Related Work: Extraction

Grenager et al. (2005) presents an unsupervised
approach to an information extraction task, called
CLASSIFIEDS here, which involves segmenting clas-
sified advertisements into topical sections (see fig-
ure 1(c)). Labels in this domain tend to be “sticky”
in that the correct annotation tends to consist of
multi-element fields of the same label. The over-
all approach of Grenager et al. (2005) typifies the
process involved in fully unsupervised learning on
new domain: they first alter the structure of their
HMM so that diagonal transitions are preferred, then
modify the transition structure to explicitly model
boundary tokens, and so on. Given enough refine-

Label Prototypes
ROOMATES roommate respectful drama
RESTRICTIONS pets smoking dog
UTILITIES utilities pays electricity
AVAILABLE immediately begin cheaper
SIZE 2 br sq
PHOTOS pictures image link
RENT $ month *number*15*1
CONTACT *phone* call *time*
FEATURES kitchen laundry parking
NEIGHBORHOOD close near shopping
ADDRESS address carlmont *ordinal*5

BOUNDARY ; . !

Figure 2: Prototype list derived from the develop-
ment set of the CLASSIFIEDS data. The BOUND-

ARY field is not present in the original annotation,
but added to model boundaries (see Section 5.3).
The starred tokens are the results of collapsing of
basic entities during pre-processing as is done in
(Grenager et al., 2005)

ments the model learns to segment with a reasonable
match to the target structure.

In section 5.3, we discuss an approach to this
task which does not require customization of model
structure, but rather centers on feature engineering.

4 Approach

In the present work, we consider the problem of
learning sequence models over text. For each doc-
ument x = [xi], we would like to predict a sequence
of labels y = [yi], where xi ∈ X and yi ∈ Y . We
construct a generative model, p(x, y|θ), where θ are
the model’s parameters, and choose parameters to
maximize the log-likelihood of our observed data D:

L(θ;D) =
∑
x∈D

log p(x|θ)

=
∑
x∈D

log
∑

y

p(x, y|θ)
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Figure 3: Graphical model representation of trigram
tagger for English POS domain.

4.1 Markov Random Fields

We take our model family to be chain-structured
Markov random fields (MRFs), the undirected
equivalent of HMMs. Our joint probability model
over (x, y) is given by

p(x, y|θ) =
1

Z(θ)

n∏
i=1

φ(xi, yi)φ(yi−1, yi)

where φ(c) is a potential over a clique c, taking the
form exp

{
θT f(c)

}
, and f(c) is the vector of fea-

tures active over c. In our sequence models, the
cliques are over the edges/transitions (yi−1, yi) and
nodes/emissions (xi, yi). See figure 3 for an exam-
ple from the English POS tagging domain.

Note that the only way an MRF differs from
a conditional random field (CRF) (Lafferty et al.,
2001) is that the partition function is no longer ob-
servation dependent; we are modeling the joint prob-
ability of x and y instead of y given x. As a result,
learning an MRF is slightly harder than learning a
CRF; we discuss this issue in section 4.4.

4.2 Prototype-Driven Learning

We assume prior knowledge about the target struc-
ture via a prototype list, which specifies the set of
target labels Y and, for each label y ∈ Y , a set of
prototypes words, py ∈ Py. See figures 2 and 4 for
examples of prototype lists.1

1Note that this setting differs from the standard semi-
supervised learning setup, where a small number of fully la-
beled examples are given and used in conjunction with a larger
amount of unlabeled data. In our prototype-driven approach, we
never provide a single fully labeled example sequence. See sec-
tion 5.3 for further comparison of this setting to semi-supervised
learning.

Broadly, we would like to learn sequence models
which both explain the observed data and meet our
prior expectations about target structure. A straight-
forward way to implement this is to constrain each
prototype word to take only its given label(s) at
training time. As we show in section 5, this does
not work well in practice because this constraint on
the model is very sparse.

In providing a prototype, however, we generally
mean something stronger than a constraint on that
word. In particular, we may intend that words which
are in some sense similar to a prototype generally be
given the same label(s) as that prototype.

4.3 Distributional Similarity
In syntactic distributional clustering, words are
grouped on the basis of the vectors of their pre-
ceeding and following words (Schütze, 1995; Clark,
2001). The underlying linguistic idea is that replac-
ing a word with another word of the same syntactic
category should preserve syntactic well-formedness
(Radford, 1988). We present more details in sec-
tion 5, but for now assume that a similarity function
over word types is given.

Suppose further that for each non-prototype word
type w, we have a subset of prototypes, Sw, which
are known to be distributionally similar to w (above
some threshold). We would like our model to relate
the tags of w to those of Sw.

One approach to enforcing the distributional as-
sumption in a sequence model is by supplementing
the training objective (here, data likelihood) with a
penalty term that encourages parameters for which
each w’s posterior distribution over tags is compati-
ble with it’s prototypes Sw. For example, we might
maximize,∑

x∈D

log p(x|θ)−
∑
w

∑
z∈Sw

KL( t|z || t|w)

where t|w is the model’s distribution of tags for
word w. The disadvantage of a penalty-based ap-
proach is that it is difficult to construct the penalty
term in a way which produces exactly the desired
behavior.

Instead, we introduce distributional prototypes
into the learning process as features in our log-linear
model. Concretely, for each prototype z, we intro-
duce a predicate PROTO = z which becomes active



at each w for which z ∈ Sw (see figure 3). One ad-
vantage of this approach is that it allows the strength
of the distributional constraint to be calibrated along
with any other features; it was also more successful
in our experiments.

4.4 Parameter Estimation
So far we have ignored the issue of how we learn
model parameters θ which maximizeL(θ;D). If our
model family were HMMs, we could use the EM al-
gorithm to perform a local search. Since we have
a log-linear formulation, we instead use a gradient-
based search. In particular, we use L-BFGS (Liu
and Nocedal, 1989), a standard numerical optimiza-
tion technique, which requires the ability to evaluate
L(θ;D) and its gradient at a given θ.

The density p(x|θ) is easily calculated up to the
global constant Z(θ) using the forward-backward
algorithm (Rabiner, 1989). The partition function
is given by

Z(θ) =
∑

x

∑
y

n∏
i=1

φ(xi, yi)φ(yi−1, yi)

=
∑

x

∑
y

score(x, y)

Z(θ) can be computed exactly under certain as-
sumptions about the clique potentials, but can in all
cases be bounded by

Ẑ(θ) =
K∑

`=1

Ẑ`(θ) =
K∑

`=1

∑
x:|x|=`

score(x, y)

Where K is a suitably chosen large constant. We can
efficiently compute Ẑ`(θ) for fixed ` using a gener-
alization of the forward-backward algorithm to the
lattice of all observations x of length ` (see Smith
and Eisner (2005) for an exposition).

Similar to supervised maximum entropy prob-
lems, the partial derivative of L(θ;D) with respect
to each parameter θj (associated with feature fj) is
given by a difference in feature expectations:

∂L(θ;D)
∂θj

=
∑
x∈D

(
Ey|x,θfj − Ex,y|θfj

)
The first expectation is the expected count of the fea-
ture under the model’s p(y|x, θ) and is again eas-
ily computed with the forward-backward algorithm,

Num Tokens
Setting 48K 193K
BASE 42.2 41.3
PROTO 61.9 68.8
PROTO+SIM 79.1 80.5

Table 1: English POS results measured by per-
position accuracy

just as for CRFs or HMMs. The second expectation
is the expectation of the feature under the model’s
joint distribution over all x, y pairs, and is harder to
calculate. Again assuming that sentences beyond a
certain length have negligible mass, we calculate the
expectation of the feature for each fixed length ` and
take a (truncated) weighted sum:

Ex,y|θfj =
K∑

`=1

p(|x| = `)Ex,y|`,θfj

For fixed `, we can calculate Ex,y|`,θfj using the lat-
tice of all inputs of length `. The quantity p(|x| = `)
is simply Ẑ`(θ)/Ẑ(θ).

As regularization, we use a diagonal Gaussian
prior with variance σ2 = 0.5, which gave relatively
good performance on all tasks.

5 Experiments

We experimented with prototype-driven learning in
three domains: English and Chinese part-of-speech
tagging and classified advertisement field segmenta-
tion. At inference time, we used maximum poste-
rior decoding,2 which we found to be uniformly but
slightly superior to Viterbi decoding.

5.1 English POS Tagging
For our English part-of-speech tagging experiments,
we used the WSJ portion of the English Penn tree-
bank (Marcus et al., 1994). We took our data to be
either the first 48K tokens (2000 sentences) or 193K
tokens (8000 sentences) starting from section 2. We
used a trigram tagger of the model form outlined in
section 4.1 with the same set of spelling features re-
ported in Smith and Eisner (2005): exact word type,

2At each position choosing the label which has the highest
posterior probability, obtained from the forward-backward al-
gorithm.



Label Prototype Label Prototype
NN % company year NNS years shares companies
JJ new other last VBG including being according
MD will would could -LRB- -LRB- -LCB-
VBP are ’re ’ve DT the a The
RB n’t also not WP$ whose
-RRB- -RRB- -RCB- FW bono del kanji
WRB when how where RP Up ON
IN of in for VBD said was had
SYM c b f $ $ US$ C$
CD million billion two # #
TO to To na : – : ;
VBN been based compared NNPS Philippines Angels Rights
RBR Earlier duller “ “ ‘ non-“
VBZ is has says VB be take provide
JJS least largest biggest RBS Worst
NNP Mr. U.S. Corp. , ,
POS ’S CC and or But
PRP$ its their his JJR smaller greater larger
PDT Quite WP who what What
WDT which Whatever whatever . . ? !
EX There PRP it he they
” ” UH Oh Well Yeah

1

Figure 4: English POS prototype list

Correct Tag Predicted Tag % of Errors
CD DT 6.2
NN JJ 5.3
JJ NN 5.2
VBD VBN 3.3
NNS NN 3.2

Figure 5: Most common English POS confusions for
PROTO+SIM on 193K tokens

character suffixes of length up to 3, initial-capital,
contains-hyphen, and contains-digit. Our only edge
features were tag trigrams.

With just these features (our baseline BASE) the
problem is symmetric in the 45 model labels. In
order to break initial symmetry we initialized our
potentials to be near one, with some random noise.
To evaluate in this setting, model labels must be
mapped to target labels. We followed the common
approach in the literature, greedily mapping each
model label to a target label in order to maximize
per-position accuracy on the dataset. The results of
BASE, reported in table 1, depend upon random ini-
tialization; averaging over 10 runs gave an average
per-position accuracy of 41.3% on the larger training
set.

We automatically extracted the prototype list by
taking our data and selecting for each annotated la-
bel the top three occurring word types which were
not given another label more often. This resulted

in 116 prototypes for the 193K token setting.3 For
comparison, there are 18,423 word types occurring
in this data.

Incorporating the prototype list in the simplest
possible way, we fixed prototype occurrences in the
data to their respective annotation labels. In this
case, the model is no longer symmetric, and we
no longer require random initialization or post-hoc
mapping of labels. Adding prototypes in this way
gave an accuracy of 68.8% on all tokens, but only
47.7% on non-prototype occurrences, which is only
a marginal improvement over BASE. It appears as
though the prototype information is not spreading to
non-prototype words.

In order to remedy this, we incorporated distri-
butional similarity features. Similar to (Schütze,
1995), we collect for each word type a context vector
of the counts of the most frequent 500 words, con-
joined with a direction and distance (e.g +1,-2). We
then performed an SVD on the matrix to obtain a re-
duced rank approximation. We used the dot product
between left singular vectors as a measure of distri-
butional similarity. For each word w, we find the set
of prototype words with similarity exceeding a fixed
threshold of 0.35. For each of these prototypes z,
we add a predicate PROTO = z to each occurrence of
w. For example, we might add PROTO = said to each
token of reported (as in figure 3).4

Each prototype word is also its own prototype
(since a word has maximum similarity to itself), so
when we lock the prototype to a label, we are also
pushing all the words distributionally similar to that
prototype towards that label.5

3To be clear: this method of constructing a prototype list
required statistics from the labeled data. However, we believe
it to be a fair and necessary approach for several reasons. First,
we wanted our results to be repeatable. Second, we did not want
to overly tune this list, though experiments below suggest that
tuning could greatly reduce the error rate. Finally, it allowed us
to run on Chinese, where the authors have no expertise.

4Details of distributional similarity features: To extract con-
text vectors, we used a window of size 2 in either direction and
use the first 250 singular vectors. We collected counts from
all the WSJ portion of the Penn Treebank as well as the entire
BLIPP corpus. We limited each word to have similarity features
for its top 5 most similar prototypes.

5Note that the presence of a prototype feature does not en-
sure every instance of that word type will be given its proto-
type’s label; pressure from “edge” features or other prototype
features can cause occurrences of a word type to be given differ-
ent labels. However, rare words with a single prototype feature
are almost always given that prototype’s label.



This setting, PROTO+SIM, brings the all-tokens
accuracy up to 80.5%, which is a 37.5% error re-
duction over PROTO. For non-prototypes, the accu-
racy increases to 67.8%, an error reduction of 38.4%
over PROTO. The overall error reduction from BASE

to PROTO+SIM on all-token accuracy is 66.7%.
Table 5 lists the most common confusions for

PROTO+SIM. The second, third, and fourth most
common confusions are characteristic of fully super-
vised taggers (though greater in number here) and
are difficult. For instance, both JJs and NNs tend to
occur after determiners and before nouns. The CD

and DT confusion is a result of our prototype list not
containing a contains-digit prototype for CD, so the
predicate fails to be linked to CDs. Of course in a
realistic, iterative design setting, we could have al-
tered the prototype list to include a contains-digit
prototype for CD and corrected this confusion.

Figure 6 shows the marginal posterior distribu-
tion over label pairs (roughly, the bigram transi-
tion matrix) according to the treebank labels and the
PROTO+SIM model run over the training set (using
a collapsed tag set for space). Note that the broad
structure is recovered to a reasonable degree.

It is difficult to compare our results to other sys-
tems which utilize a full or partial tagging dictio-
nary, since the amount of provided knowledge is
substantially different. The best comparison is to
Smith and Eisner (2005) who use a partial tagging
dictionary. In order to compare with their results,
we projected the tagset to the coarser set of 17 that
they used in their experiments. On 24K tokens, our
PROTO+SIM model scored 82.2%. When Smith and
Eisner (2005) limit their tagging dictionary to words
which occur at least twice, their best performing
neighborhood model achieves 79.5%. While these
numbers seem close, for comparison, their tagging
dictionary contained information about the allow-
able tags for 2,125 word types (out of 5,406 types)
and the their system must only choose, on average,
between 4.4 tags for a word. Our prototype list,
however, contains information about only 116 word
types and our tagger must on average choose be-
tween 16.9 tags, a much harder task. When Smith
and Eisner (2005) include tagging dictionary entries
for all words in the first half of their 24K tokens, giv-
ing tagging knowledge for 3,362 word types, they do
achieve a higher accuracy of 88.1%.

Setting Accuracy
BASE 46.4
PROTO 53.7
PROTO+SIM 71.5
PROTO+SIM+BOUND 74.1

Figure 7: Results on test set for ads data in
(Grenager et al., 2005).

5.2 Chinese POS Tagging

We also tested our POS induction system on the Chi-
nese POS data in the Chinese Treebank (Ircs, 2002).
The model is wholly unmodified from the English
version except that the suffix features are removed
since, in Chinese, suffixes are not a reliable indi-
cator of part-of-speech as in English (Tseng et al.,
2005). Since we did not have access to a large aux-
iliary unlabeled corpus that was segmented, our dis-
tributional model was built only from the treebank
text, and the distributional similarities are presum-
ably degraded relative to the English. On 60K word
tokens, BASE gave an accuracy of 34.4, PROTO gave
39.0, and PROTO+SIM gave 57.4, similar in order if
not magnitude to the English case.

We believe the performance for Chinese POS tag-
ging is not as high as English for two reasons: the
general difficulty of Chinese POS tagging (Tseng et
al., 2005) and the lack of a larger segmented corpus
from which to build distributional models. Nonethe-
less, the addition of distributional similarity features
does reduce the error rate by 35% from BASE.

5.3 Information Field Segmentation

We tested our framework on the CLASSIFIEDS data
described in Grenager et al. (2005) under conditions
similar to POS tagging. An important characteristic
of this domain (see figure 1(a)) is that the hidden la-
bels tend to be “sticky,” in that fields tend to consist
of runs of the same label, as in figure 1(c), in con-
trast with part-of-speech tagging, where we rarely
see adjacent tokens given the same label. Grenager
et al. (2005) report that in order to learn this “sticky”
structure, they had to alter the structure of their
HMM so that a fixed mass is placed on each diag-
onal transition. In this work, we learned this struc-
ture automatically though prototype similarity fea-
tures without manually constraining the model (see
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(a) (b)

Figure 6: English coarse POS tag structure: a) corresponds to “correct” transition structure from labeled
data, b) corresponds to PROTO+SIM on 24K tokens
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Figure 8: Field segmentation observed transition structure: (a) labeled data, (b) BASE(c)
BASE+PROTO+SIM+BOUND (after post-processing)

figure 8), though we did change the similarity func-
tion (see below).

On the test set of (Grenager et al., 2005),
BASE scored an accuracy of 46.4%, comparable to
Grenager et al. (2005)’s unsupervised HMM base-
line. Adding the prototype list (see figure 2) without
distributional features yielded a slightly improved
accuracy of 53.7%. For this domain, we utilized
a slightly different notion of distributional similar-
ity: we are not interested in the syntactic behavior
of a word type, but its topical content. Therefore,
when we collect context vectors for word types in
this domain, we make no distinction by direction
or distance and collect counts from a wider win-
dow. This notion of distributional similarity is more
similar to latent semantic indexing (Deerwester et
al., 1990). A natural consequence of this definition
of distributional similarity is that many neighboring
words will share the same prototypes. Therefore
distributional prototype features will encourage la-
bels to persist, naturally giving the “sticky” effect
of the domain. Adding distributional similarity fea-

tures to our model (PROTO+SIM) improves accuracy
substantially, yielding 71.5%, a 38.4% error reduc-
tion over BASE.6

Another feature of this domain that Grenager et
al. (2005) take advantage of is that end of sen-
tence punctuation tends to indicate the end of a
field and the beginning of a new one. Grenager et
al. (2005) experiment with manually adding bound-
ary states and biasing transitions from these states
to not self-loop. We capture this “boundary” ef-
fect by simply adding a line to our protoype-list,
adding a new BOUNDARY state (see figure 2) with
a few (hand-chosen) prototypes. Since we uti-
lize a trigram tagger, we are able to naturally cap-
ture the effect that the BOUNDARY tokens typically
indicate transitions between the fields before and
after the boundary token. As a post-processing
step, when a token is tagged as a BOUNDARY

6Distributional similarity details: We collect for each word
a context vector consisting of the counts for words occurring
within three token occurrences of a word. We perform a SVD
onto the first 50 singular vectors.



Correct Tag Predicted Tag % of Errors
FEATURES SIZE 11.2
FEATURES NBRHD 9.0
SIZE FEATURES 7.7
NBRHD FEATURES 6.4
ADDRESS NBRHD 5.3
UTILITIES FEATURES 5.3

Figure 9: Most common classified ads confusions

token it is given the same label as the previous
non-BOUNDARY token, which reflects the annota-
tional convention that boundary tokens are given the
same label as the field they terminate. Adding the
BOUNDARY label yields significant improvements,
as indicated by the PROTO+SIM+BOUND setting in
Table 5.3, surpassing the best unsupervised result
of Grenager et al. (2005) which is 72.4%. Further-
more, our PROTO+SIM+BOUND model comes close
to the supervised HMM accuracy of 74.4% reported
in Grenager et al. (2005).

We also compared our method to the most ba-
sic semi-supervised setting, where fully labeled doc-
uments are provided along with unlabeled ones.
Roughly 25% of the data had to be labeled
in order to achieve an accuracy equal to our
PROTO+SIM+BOUND model, suggesting that the use
of prior knowledge in the prototype system is partic-
ularly efficient.

In table 5.3, we provide the top confusions made
by our PROTO+SIM+BOUND model. As can be seen,
many of our confusions involve the FEATURE field,
which serves as a general purpose background state,
which often differs subtly from other fields such as
SIZE. For instance, the parenthical comment: ( mas-
ter has walk - in closet with vanity ) is labeled as
a SIZE field in the data, but our model proposed
it as a FEATURE field. NEIGHBORHOOD and AD-

DRESS is another natural confusion resulting from
the fact that the two fields share much of the same
vocabulary (e.g [ADDRESS 2525 Telegraph Ave.] vs.
[NBRHD near Telegraph]).
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6 Conclusions

We have shown that distributional prototype features
can allow one to specify a target labeling scheme
in a compact and declarative way. These features
give substantial error reduction on several induction
tasks by allowing one to link words to prototypes ac-
cording to distributional similarity. Another positive
property of this approach is that it tries to reconcile
the success of sequence-free distributional methods
in unsupervised word clustering with the success of
sequence models in supervised settings: the similar-
ity guides the learning of the sequence model.
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